Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473736

RESUMO

Debye temperatures of α-SnxFe1-xOOH nanoparticles (x = 0, 0.05, 0.10, 0.15 and 0.20, abbreviated as Sn100x NPs) prepared by hydrothermal reaction were estimated with 57Fe- and 119Sn-Mössbauer spectra measured by varying the temperature from 20 to 300 K. Electrical properties were studied by solid-state impedance spectroscopy (SS-IS). Together, the charge-discharge capacity of Li- and Na-ion batteries containing Sn100x NPs as a cathode were evaluated. 57Fe-Mössbauer spectra of Sn10, Sn15, and Sn20 measured at 300 K showed only one doublet due to the superparamagnetic doublet, while the doublet decomposed into a sextet due to goethite at the temperature below 50 K for Sn 10, 200 K for Sn15, and 100 K for Sn20. These results suggest that Sn10, Sn15 and Sn20 had smaller particles than Sn0. On the other hand, 20 K 119Sn-Mössbauer spectra of Sn15 were composed of a paramagnetic doublet with an isomer shift (δ) of 0.24 mm s-1 and quadrupole splitting (∆) of 3.52 mm s-1. These values were larger than those of Sn10 (δ: 0.08 mm s-1, ∆: 0.00 mm s-1) and Sn20 (δ: 0.10 mm s-1, ∆: 0.00 mm s-1), suggesting that the SnIV-O chemical bond is shorter and the distortion of octahedral SnO6 is larger in Sn15 than in Sn10 and Sn20 due to the increase in the covalency and polarization of the SnIV-O chemical bond. Debye temperatures determined from 57Fe-Mössbauer spectra measured at the low temperature were 210 K, 228 K, and 250 K for Sn10, Sn15, and Sn20, while that of α-Fe2O3 was 324 K. Similarly, the Debye temperature of 199, 251, and 269 K for Sn10, Sn15, and Sn20 were estimated from the temperature-dependent 119Sn-Mössbauer spectra, which were significantly smaller than that of BaSnO3 (=658 K) and SnO2 (=382 K). These results suggest that Fe and Sn are a weakly bound lattice in goethite NPs with low crystallinity. Modification of NPs and addition of Sn has a positive effect, resulting in an increase in DC conductivity of almost 5 orders of magnitude, from a σDC value of 9.37 × 10-7 (Ω cm)-1 for pure goethite Sn (Sn0) up to DC plateau for samples containing 0.15 and 0.20 Sn (Sn15 and Sn20) with a DC value of ~4 × 10-7 (Ω cm)-1 @423 K. This non-linear conductivity pattern and levelling at a higher Sn content suggests that structural modifications have a notable impact on electron transport, which is primarily governed by the thermally activated via three-dimensional hopping of small polarons (SPH). Measurements of SIB performance, including the Sn100x cathode under a current density of 50 mA g-1, showed initial capacities of 81 and 85 mAh g-1 for Sn0 and Sn15, which were larger than the others. The large initial capacities were measured at a current density of 5 mA g-1 found at 170 and 182 mAh g-1 for Sn15 and Sn20, respectively. It is concluded that tin-goethite NPs are an excellent material for a secondary battery cathode and that Sn15 is the best cathode among the studied Sn100x NPs.


Assuntos
Compostos de Ferro , Temperatura , Espectroscopia de Ressonância de Spin Eletrônica , Compostos de Ferro/química , Minerais
2.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474252

RESUMO

Na-V-P-Nb-based materials have gained substantial recognition as cathode materials in high-rate sodium-ion batteries due to their unique properties and compositions, comprising both alkali and transition metal ions, which allow them to exhibit a mixed ionic-polaronic conduction mechanism. In this study, the impact of introducing two transition metal oxides, V2O5 and Nb2O5, on the thermal, (micro)structural, and electrical properties of the 35Na2O-25V2O5-(40 - x)P2O5 - xNb2O5 system is examined. The starting glass shows the highest values of DC conductivity, σDC, reaching 1.45 × 10-8 Ω-1 cm-1 at 303 K, along with a glass transition temperature, Tg, of 371 °C. The incorporation of Nb2O5 influences both σDC and Tg, resulting in non-linear trends, with the lowest values observed for the glass with x = 20 mol%. Electron paramagnetic resonance measurements and vibrational spectroscopy results suggest that the observed non-monotonic trend in σDC arises from a diminishing contribution of polaronic conductivity due to the decrease in the relative number of V4+ ions and the introduction of Nb2O5, which disrupts the predominantly mixed vanadate-phosphate network within the starting glasses, consequently impeding polaronic transport. The mechanism of electrical transport is investigated using the model-free Summerfield scaling procedure, revealing the presence of mixed ionic-polaronic conductivity in glasses where x < 10 mol%, whereas for x ≥ 10 mol%, the ionic conductivity mechanism becomes prominent. To assess the impact of the V2O5 content on the electrical transport mechanism, a comparative analysis of two analogue series with varying V2O5 content (10 and 25 mol%) is conducted to evaluate the extent of its polaronic contribution.


Assuntos
Nióbio , Fosfatos , Fosfatos/química , Vidro/química , Íons , Espectroscopia de Ressonância de Spin Eletrônica , Sódio/química , Cerâmica/química
3.
Materials (Basel) ; 17(2)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38255474

RESUMO

Sodium-phosphate-based glass-ceramics (GCs) are promising materials for a wide range of applications, including solid-state sodium-ion batteries, microelectronic packaging substrates, and humidity sensors. This study investigated the impact of 24 h heat-treatments (HT) at varying temperatures on Na-Ge-P glass, with a focus on (micro)structural, electrical, and dielectric properties of prepared GCs. Various techniques such as powder X-ray diffraction (PXRD), infrared spectroscopy-attenuated total reflection (IR-ATR), and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) were employed. With the elevation of HT temperature, crystallinity progressively rose; at 450 °C, the microstructure retained amorphous traits featuring nanometric grains, whereas at 550 °C, HT resulted in fully crystallized structures characterized by square-shaped micron-scale grains of NaPO3. The insight into the evaluation of electrical and dielectric properties was provided by Solid-State Impedance Spectroscopy (SS-IS), revealing a strong correlation with the conditions of controlled crystallization and observed (micro)structure. Compared to the initial glass, which showed DC conductivity (σDC) on the order of magnitude 10-7 Ω-1 cm-1 at 393 K, the obtained GCs exhibited a lower σDC ranging from 10-8 to 10-10 Ω-1 cm-1. With the rise in HT temperature, σDC further decreased due to the crystallization of the NaPO3 phase, depleting the glass matrix of mobile Na+ ions. The prepared GCs showed improved dielectric parameters in comparison to the initial glass, with a noticeable increase in dielectric constant values (~20) followed by a decline in dielectric loss (~10-3) values as the HT temperatures rise. Particularly, the GC obtained at @450 stood out as the optimal sample, showcasing an elevated dielectric constant and low dielectric loss value, along with moderate ionic conductivity. This research uncovers the intricate relationship between heat-treatment conditions and material properties, emphasizing that controlled crystallization allows for precise modifications to microstructure and phase composition within the remaining glassy phase, ultimately facilitating the fine-tuning of material properties.

4.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37762603

RESUMO

The present study investigates the relationship between the local structure, photocatalytic ability, and cathode performances in sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs) using Ni-substituted goethite nanoparticles (NixFe1-xOOH NPs) with a range of 'x' values from 0 to 0.5. The structural characterization was performed applying various techniques, including X-ray diffractometry (XRD); thermogravimetry differential thermal analysis (TG-DTA); Fourier transform infrared spectroscopy (FT-IR); X-ray absorption spectroscopy (XANES/EXAFS), both measured at room temperature (RT); 57Fe Mössbauer spectroscopy recorded at RT and low temperatures (LT) from 20 K to 300 K; Brunauer-Emmett-Teller surface area measurement (BET), and diffuse reflectance spectroscopy (DRS). In addition, the electrical properties of NixFe1-xOOH NPs were evaluated by solid-state impedance spectroscopy (SS-IS). XRD showed the presence of goethite as the only crystalline phase in prepared samples with x ≤ 0.20, and goethite and α-Ni(OH)2 in the samples with x > 0.20. The sample with x = 0.10 (Ni10) showed the highest photo-Fenton ability with a first-order rate constant value (k) of 15.8 × 10-3 min-1. The 57Fe Mössbauer spectrum of Ni0, measured at RT, displayed a sextet corresponding to goethite, with an isomer shift (δ) of 0.36 mm s-1 and a hyperfine magnetic distribution (Bhf) of 32.95 T. Moreover, the DC conductivity decreased from 5.52 × 10-10 to 5.30 × 10-12 (Ω cm)-1 with 'x' increasing from 0.10 to 0.50. Ni20 showed the highest initial discharge capacity of 223 mAh g-1, attributed to its largest specific surface area of 174.0 m2 g-1. In conclusion, NixFe1-xOOH NPs can be effectively utilized as visible-light-activated catalysts and active cathode materials in secondary batteries.


Assuntos
Minerais , Nanopartículas , Espectroscopia de Infravermelho com Transformada de Fourier , Eletrodos
5.
Materials (Basel) ; 16(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36770069

RESUMO

Molybdenum coordination complexes are widely applied due to their biological and pharmacological potential, as well as their performance in different catalytic processes. Parent dioxidomolybdenum Schiff base complexes were prepared via the reaction of [MoO2(acac)2] with a hydrazone Schiff-base tetradentate ligand. A new hydrazone-Schiff base (H2L1 and 2) and its corresponding mononuclear and polynuclear dioxidomolybdenum(VI) complex were synthesized and characterized by spectroscopic methods and elemental analyses, and their thermal behavior was investigated by thermogravimetry. The crystal and molecular structures of H2L2 ligands and the complexes [MoO2(L1)(H2O)], [MoO2(L2)(H2O)], [MoO2(L1)(MeOH)]∙MeOH, [MoO2(L1)(EtOH)]∙EtOH, [MoO2(L1)(2-PrOH)]∙2-PrOH, and [MoO2(L1)]n were determined by single-crystal X-ray diffraction. Using the in situ impedance spectroscopy method (IS), the structural transformations of chosen complexes were followed, and their electrical properties were examined in a wide range of temperatures and frequencies.

6.
Acta Stomatol Croat ; 56(3): 281-287, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36382213

RESUMO

Background: The dental ceramic materials are constantly being developed due to their continuous clinical application in the field of esthetic dentistry. Glass ceramics (GC) materials are also of special interest for dental application due to their specific properties; and thus, they can be applied as crowns, veneers and small bridges. Purpose: However, due to a variety of different GC materials, it is of keen interest to inspect their morphology and ion-diffusion, which also governs aging properties. Material and methods: In this study, two different GC materials were processed, i.e., lithium silicate (LS-10) and lithium disilicate (LS-20). The aforementioned properties can be inspected by using impedance spectroscopy (IS) and scanning electron microscopy (SEM). Results: SEM study suggested that LS-10 material is harder to mechanically process by computer-aided design/computer-aided manufacturing (CAD/CAM) technology. Furthermore, IS measurements showed that LS-20 (vs. LS-10) has more pronounced resistance properties. Conclusion: According to IS data, it was concluded that LS-20 (vs. LS-10) has more pronounced resistance properties that point out to hindered ion-diffusion and to better aging properties.

7.
Polymers (Basel) ; 14(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36235959

RESUMO

The aim of this study is to investigate the influence of different glass fibers made of commercial silicate, borosilicate, and laboratory-made iron-phosphate compositions, on the preparation of polylactic acid (PLA) composites and their structural and physical properties. The thermal, structural, and electrical properties of prepared PLA-glass fiber composites were studied using differential scanning calorimetry, X-ray diffraction, microscopy, and impedance spectroscopy. The structural as well as morphological, thermal, and electrical properties of all PLA-glass composites were found to be very similar and independent of the composition and aspect ratio of glass fibers. All types of glass fibers improve mechanical properties, increase thermal stability, and decrease the electrical conductivity of PLA, thereby producing mechanical strong electrically insulating composite material with potential in various applications.

8.
Materials (Basel) ; 15(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35269030

RESUMO

Zirconia (ZrO2), a widely known material with an extensive range of applications, is especially suitable for dental applications. This kind of dental material is produced in the form of blocks or discs (mostly discs-depending on CAD/CAM machines) by cold isostatic pressing (CIP). Such discs are subsequently milled by CAM/CAD technology into a desirable form. Due to the application of CIP, the resulting discs consist of different yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) powders, additives and pigments. The diverse composition of the discs (e.g., different Y3+ content) governs material properties, such as hardness, toughness and translucence. The aim of this work was to investigate the impact of Y3+ addition on the grains and grain boundaries, on the ZrO2 phases lattice parameter values and on the electrical equivalent circuit parameters of the prepared Y-TZP samples. The disc-shaped samples were prepared by using CAM/CAD technology. It was observed that the grain size and the grain density were increased by Y3+ addition. The sample with the lowest Y3+ content was characterized by the highest portion of the tetragonal phase, whilst the disc with the highest Y3+ addition consisted mainly of the cubic phase. It was also observed that at the higher Y3+ ion concentrations, these ions mainly incorporated the tetragonal phase. Furthermore, conductivity investigations showed that the resistivity of the grains in the samples with the higher Y3+ concentrations was decreased as these ions were mainly trapped in the grain boundary. On the other hand, the Y3+ trapping increased the capacitance of the grain boundary.

9.
Nanomaterials (Basel) ; 12(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35159866

RESUMO

Lowering the constitutive domains of semiconducting oxides to the nano-range has recently opened up the possibility of added benefit in the research area of sensing materials, in terms both of greater specific surface area and pore volume. Among such nanomaterials, ceria has attracted much attention; therefore, we chemically derived homogeneous ceria nanoparticle slurries. One set of samples was tape-casted onto a conducting glass substrate to form thin-films of various thicknesses, thereby avoiding demanding reaction conditions typical of physical depositions, while the other was pressed into pellets. Structural and microstructural features, along with electrical properties and derivative humidity-sensing performance of ceria thin-films and powders pressed into pellets, were studied in detail. Particular attention was given to solid-state impedance spectroscopy (SS-IS), under controlled relative humidity (RH) from 30%-85%, in a wide temperature and frequency range. Moreover, for the thin-film setup, measurements were performed in surface-mode and cross-section-mode. From the results, we extrapolated the influence of composition on relative humidity, the role of configuration and thin-film thickness on electrical properties, and derivative humidity-sensing performance. The structural analysis and depth profiling both point to monophasic crystalline ceria. Microstructure analysis reveals slightly agglomerated spherical particles and thin-films with low surface roughness. Under controlled humidity, the shape of the conductivity spectrum stays the same along with an increase in RH, and a notable shift to higher conductivity values. The relaxation is slow, as the thickness of the pellet slows the return of conductivity values. The increase in humidity has a positive effect on the overall DC conductivity, similar to the temperature effect for semiconducting behavior. As for the surface measurement setup, the thin-film thickness impacts the shape of the spectra and electrical processes. The surface measurement setup turns out to be more sensitive to relative humidity changes, emphasized with higher RH, along with an increase in thin-film thickness. The moisture directly affects the conductivity spectra in the dispersion part, i.e., on the localized short-range charge carriers. Moisture sensitivity is a reversible process for thin-film samples, in contrast to pellet form samples.

10.
Nanomaterials (Basel) ; 12(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35214967

RESUMO

In this work, we report the effect of the addition of modifiers and network formers on the polaronic transport in iron phosphate glasses (IPG) in two systems of HfO2-B2O3-Fe2O3-P2O5, to which up to 8 mol% boron and hafnium are added. The addition of oxides significantly changes the Fe2+/Fetotal ratio, thus directly affecting the polaron number density and consequently controlling DC conductivity trends for both series studied by impedance spectroscopy. Moreover, we found that short-range polaron dynamics are also under the influence of structural changes. Therefore, we have studied them in detail using model-free scaling procedures, Summerfield and Sidebottom scaling. An attempt to construct a super-master curve revealed that in addition to change in polaron number density, also the polaron hopping lengths change, and Sidebottom scaling yields a super-master curve. The spatial extent of the localized motion of polarons is correlated with polaron number density and two distinct regions are observed. A strong increase in the spatial extent of the polaron hopping jump could be related either to the structural changes due to the addition of HfO2 and B2O3 and their effects on the formation of polarons or to an inherent property of polaron transport in IP glasses with low polaron number density.

11.
Materials (Basel) ; 14(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34443115

RESUMO

In this paper, we studied the influence of polyvinylpyrrolidone (PVP) as a stabilization additive on optical and electrical properties of perovskite formamidinium lead iodide (FAPI) polycrystalline thin films on ZnO nanorods (ZNR). FAPI (as an active layer) was deposited from a single solution on ZNR (low temperature processed electron transport layer) using a one-step method with the inclusion of an anti-solvent. The role of PVP in the formation of the active layer was investigated by scanning electron microscopy and contact angle measurements to observe the effect on morphology, while X-ray diffraction was used as a method to study the stability of the film in an ambient environment. The effect of the PVP additive on the optical and electrical properties of the perovskite thin films was studied via photoluminescence, UV-Vis measurements, and electrical impedance spectroscopy. We have demonstrated that PVP inclusion in solution-processed perovskite FAPI thin films prevents the degradation of the film in an ambient atmosphere after aging for 2 months. The inclusion of the PVP also improves the infiltration of FAPI perovskite into ZnO nanostructures, increases electrical conductivity and radiative recombination of the photo-generated charge carriers. These results show promising information for promoting PVP stabilized FAPI perovskites for the new generation of photovoltaic devices.

12.
Materials (Basel) ; 14(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070667

RESUMO

Over the last decade, zirconia (ZrO2)-based ceramic materials have become more applicable to modern dental medicine due to the sustained development of diverse computer-aided design/computer-aided manufacturing (CAD/CAM) systems. However, before the cementation and clinical application, the freshly prepared zirconia material (e.g., crowns) has to be processed by sandblasting in the dental laboratory. In this work, the impact of the sandblasting on the zirconia is monitored as changes in morphology (i.e., grains and cracks), and the presence of impurities might result in a poor adhesive bonding with cement. The sandblasting is conducted by using Al2O3 powder (25, 50, 110 and 125 µm) under various amounts of air-abrasion pressure (0.1, 0.2, 0.4 and 0.6 MPa). There has been much interest in both the determination of the impact of the sandblasting on the zirconia phase transformations and conductivity. Morphology changes are observed by using Scanning Electron Microscope (SEM), the conductivity is measured by Impedance Spectroscopy (IS), and the phase transformation is observed by using Powder X-Ray Diffraction (PXRD). The results imply that even the application of the lowest amount of air-abrasion pressure and the smallest Al2O3 powder size yields a morphology change, a phase transformation and a material contamination.

13.
Phys Chem Chem Phys ; 23(16): 9761-9772, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33881071

RESUMO

Ion conducting oxide glasses are attractive materials for application in various electrochemical devices and an understanding of the structure-transport properties relationship is crucial for their development. An interesting effect of glass structure on the dynamics of mobile ions is the mixed glass-former effect which causes a non-linear change of ionic conductivity when glass-forming oxides get gradually substituted. Here, we report a strong, positive effect of structural changes on the conductivity of sodium ions in two glass systems 40Na2O-xMoO3-(60-x)P2O5 and 40Na2O-xWO3-(60-x)P2O5; x = 0-50 mol% where a conventional glass-forming oxide (P2O5) is gradually replaced by WO3/MoO3 which are conditional ones. In both glass systems, the compositional change in DC conductivity is non-linear, with the maximal increase of four orders of magnitude in the case of WO3 and three orders of magnitude in the case of MoO3. This significant enhancement of ionic conductivity is related to the formation of mixed phosphate-tungstate and phosphate-molybdate units in the glass network. The facilitating effect of these structural units on sodium ion dynamics is also observed in the changes of the shape of frequency-dependent conductivity and in the values of typical spatial extent of diffusion of sodium ions known as the Sidebottom length.

14.
Materials (Basel) ; 13(24)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321786

RESUMO

In this study, two different dental ceramics, based on zirconia-reinforced lithium-silicate (LS1) glass-ceramics (Celtra Duo, Dentsply Sirona, Bensheim, Germany) and lithium disilicate (LS2) ceramics (IPS e.max CAD, Ivoclar, Vivadent, Schaan, Liechtenstein) were examined. They were tested prior to and after the crystallization by sintering in the dental furnace. Additionally, the impact of ageing on ceramic degradability was investigated by immersing it in 4% acetic acid at 80 °C for 16 h. The degradability of the materials was monitored by Impedance Spectroscopy (IS), X-Ray Powder Diffraction (XRPD), and Field Emission Scanning Electron Microscope (FE-SEM) techniques. It was detected that LS2 (vs. LS1) samples had a lower conductivity, which can be explained by reduced portions of structural defects. XRPD analyses also showed that the ageing increased the portion of defects in ceramics, which facilitated the ion diffusion and degradation of samples. To summarize, this study suggests that the non-destructive IS technique can be employed to probe the ageing properties of the investigated LS1 and LS2 ceramics materials.

15.
Materials (Basel) ; 13(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255776

RESUMO

One-dimensional (1D) oxalate-bridged homometallic {[Mn(bpy)(C2O4)]·1.5H2O}n (1) (bpy = 2,2'-bipyridine) and heterodimetallic {[CrCu3(bpy)3(CH3OH)(H2O)(C2O4)4][Cu(bpy)Cr(C2O4)3]·CH2Cl2·CH3OH·H2O}n (2) coordination polymers, as well as the three-dimensional (3D) heterotrimetallic {[CaCr2Cu2(phen)4(C2O4)6]·4CH3CN·2H2O}n (3) (1,10-phenanthroline) network, have been synthesized by a building block approach using a layering technique, and characterized by single-crystal X-ray diffraction, infrared (IR) and impedance spectroscopies and magnetization measurements. During the crystallization process partial decomposition of the tris(oxalate)chromate(III) happened and 1D polymers 1 and 2 were formed. The antiferromagnetic interactions between the manganese(II) ions was mediated by oxalate ligands in the chain [Mn(bpy)(C2O4)]n of 1, with intra-chain super-exchange interaction ? = (-3.134 ± 0.004) K; magnetic interaction between neighbouring chains is negligible making this system closer than other known Mn-chains to the ideal 1D Heisenberg antiferromagnet. Compound 2 comprises a 1D coordination anion [Cu(bpy)Cr(C2O4)3]nn- (Cr2-Cu4) with alternating [Cr(C2O4)3]3- and [Cu(bpy)]2+ units mutually bridged through the oxalate group. Another chain (Cr1-Cu3) is similar, but involves a homodinuclear unit [Cu(bpy)(H2O)(µ-C2O4)Cu(bpy)(CH3OH)]2+ (Cu1-Cu2) coordinated as a pendant group to a terminal oxalate oxygen. Magnetic measurements showed that the Cu1-Cu2 cationic unit is a strongly coupled antiferromagnetic dimer, independent from the other magnetic ions within ferromagnetic chains Cr1-Cu3 and Cr2-Cu4. A 3D polymer {[CaCr2Cu2(phen)4(C2O4)6]·4CH3CN·2H2O}n (3) comprising three different metal centers (Ca2+, Cr3+ and Cu2+) oxalate-bridged, contains Ca2+ atoms as nodes connected with four Cr3+ atoms through oxalate ligands. The network thus formed can be reduced to an underlying graph of diamondoid (dia) or (66) topology. Magnetization of 3 shows the ferromagnetic oxalate-bridged dimers [CuIICrIII], whose mutual interaction could possibly originate through the spin polarization of Ca2+ orbitals. Compounds 1 and 3 exhibit lower electrical conductivity at room temperature (RT) in comparison to compound 2.

16.
Materials (Basel) ; 13(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212831

RESUMO

Transparent conducting oxides (TCO) with high electrical conductivity and at the same time high transparency in the visible spectrum are an important class of materials widely used in many devices requiring a transparent contact such as light-emitting diodes, solar cells and display screens. Since the improvement of electrical conductivity usually leads to degradation of optical transparency, a fine-tuning sample preparation process and a better understanding of the correlation between structural and transport properties is necessary for optimizing the properties of TCO for use in such devices. Here we report a structural and magnetotransport study of tin oxide (SnO2), a well-known and commonly used TCO, prepared by a simple and relatively cheap Atmospheric Pressure Chemical Vapour Deposition (APCVD) method in the form of thin films deposited on soda-lime glass substrates. The thin films were deposited at two different temperatures (which were previously found to be close to optimum for our setup), 590 °C and 610 °C, and with (doped) or without (undoped) the addition of fluorine dopants. Scanning Electron Microscopy (SEM) and Grazing Incidence X-ray Diffraction (GIXRD) revealed the presence of inhomogeneity in the samples, on a bigger scale in form of grains (80-200 nm), and on a smaller scale in form of crystallites (10-25 nm). Charge carrier density and mobility extracted from DC resistivity and Hall effect measurements were in the ranges 1-3 × 1020 cm-3 and 10-20 cm2/Vs, which are typical values for SnO2 films, and show a negligible temperature dependence from room temperature down to -269 °C. Such behaviour is ascribed to grain boundary scattering, with the interior of the grains degenerately doped (i.e., the Fermi level is situated well above the conduction band minimum) and with negligible electrostatic barriers at the grain boundaries (due to high dopant concentration). The observed difference for factor 2 in mobility among the thin-film SnO2 samples most likely arises due to the difference in the preferred orientation of crystallites (texture coefficient).

17.
Materials (Basel) ; 13(11)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486333

RESUMO

We report on the electrical properties of glasses with nominal composition xB2O3-(100-x)[40Fe2O3-60P2O5],x = 2-20, mol.%. The conduction transport in these glasses is polaronic and shows a strong dependence on Fe2O3 content and polaron number density. The changes in DC conductivity are found not to be directly related to B2O3, however structural changes induced by its addition impact frequency-dependent conductivity. All glasses obey Summerfield and Sidebottom procedures of scaling conductivity spectra indicating that the polaronic mechanism does not change with temperature. An attempt to produce a super-master curve revealed that shape of the conductivity dispersion is the same for glasses with up to 15.0 mol.% B2O3 but differs for glass with the highest B2O3 content. This result could be related to the presence of borate units in the glass network. Moreover, the spatial extent of localized polaron motions increases with the decrease of polaron number density, however, this increase shows a larger slope than for previously reported iron phosphate glasses most probably due to the influence of B2O3 on glass structure and formation of polarons. While Summerfield scaling procedure fails, Sidebottom scaling yields a super-master curve, which indicates that polaronic hopping lengths also change with changing polaron number density in these glasses.

18.
Sci Rep ; 9(1): 5513, 2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30940869

RESUMO

This work focuses on the in-situ characterization of multi-walled carbon nanotube (CNT) motions in thin random networks under strain. Many fine-grain models have been devised to account for CNT motions in carbon nanotube networks (CNN). However, the validation of these models relies on mesoscopic or macroscopic data with very little experimental validation of the physical mechanisms actually arising at the CNT scale. In the present paper, we use in-situ scanning electron microscopy imaging and high-resolution digital image correlation to uncover prominent mechanisms of CNT motions in CNNs under strain. Results show that thin and sparse CNNs feature stronger strain heterogeneities than thicker and denser ones. It is attributed to the complex motions of individual CNTs connected to aggregates within thin and sparse CNNs. While the aggregates exhibit a collective homogeneous deformation, individual CNTs connecting them are observed to fold, unwind or buckle, seemingly to accommodate the motion of these aggregates. In addition, looser aggregates feature internal reconfigurations via cell closing, similar to foam materials. Overall, this suggests that models describing thin and sparse CNN deformation should integrate multiphase behaviour (with various densities of aggregates in addition to individual CNTs), heterogeneity across surface, as well as imperfect substrate adhesion.

19.
Materials (Basel) ; 12(2)2019 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-30642101

RESUMO

Ground coat enamels for low carbon steel that contain silica as a mill addition have been developed to study the changes of their properties. Acid-resistant commercial enamel where silica addition was varied from 0 to 10.0 wt % was used for this investigation. The effects of the addition on the corrosion resistance, thermal properties, electrical properties, and mechanical adherence of the enamel to low carbon steel were studied. The corrosion resistance of the steel enameled coupons was tested using a salt spray (fog) apparatus for time periods reaching 168 h at room temperature. It was found that, although the density was not affected, the adherence decreased with an increase in silica content. As expected, the silica addition decreased the coefficient of thermal expansion, which is directly related to the increasing stress between the glass and steel in accordance with the adherence results. A mill addition of 7.5 wt% of silica to the samples was sufficient to obtain adequate enamel adherence and good corrosion resistance. Furthermore, the addition of silica influenced the electrical conductivity and dielectric permittivity measurements at room temperature and the conductivity measured in a wide frequency range (1 Hz⁻1 MHz). The dielectric permittivity measured at 1 MHz showed decrease after the addition of up to 7.5 wt% of silica.

20.
Phys Chem Chem Phys ; 19(5): 3999-4009, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28106224

RESUMO

The electrical and dielectric properties of three series of glasses, xHfO2-(40 - x)Fe2O3-60P2O5, 0 ≤ x ≤ 8 mol%, xCeO2-(40 - x)Fe2O3-60P2O5, 0 ≤ x ≤ 8 mol%, and xHfO2-(38 - x)Fe2O3-2B2O3-60P2O5 2 ≤ x ≤ 6 mol%, have been investigated by impedance spectroscopy over a wide frequency and temperature range. As expected, these glasses exhibit polaronic conductivity which strongly depends on the fraction of ferrous ions, Fe2+/Fetot. Following a detailed discussion on the DC conductivity, we use the MIGRATION concept to model their conductivity spectra. It is found that in each series of glasses, the shape of the conductivity isotherms remains the same indicating that the time-temperature superposition principle is satisfied and that the mechanism of conductivity is the same. Returning to a model-free scaling procedure, namely Summerfield scaling, it is found that while conductivity isotherms for each composition yield a master curve, we need to suitably shift individual master curves on the frequency axis to generate a super-master curve. We examine the dependence of the DC conductivity and the shift factors on the number density of charge carriers. Next, using the fact that the dielectric strength of relaxation for each isotherm is well-defined in these systems, we scale the conductivity isotherms using the Sidebottom scaling procedure. This procedure yields a super-master curve, implying that length scales for polaronic transport also change with composition. Further, using the scaling features of permittivity spectra, we extract in a straightforward way the characteristic spatial extent of localized hopping of polarons and find that it decreases with increasing number density of charge carriers. The magnitude of these values obtained from permittivity spectra lies in the same range as those for the polaron radius calculated using the equation proposed by Bogomolov and Mirilin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...